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THE FORMAL LINEARIZATION METHOD TO
MULTISOLITON SOLUTIONS FOR THREE MODEL

EQUATIONS OF SHALLOW WATER WAVES

N. Taghizadeh*, M. Mirzazadeh**, and A. Samiei
Paghaleh***

Abstract. In this paper, the formal linearization method is used
to construct multisoliton solutions for three model of shallow water
waves equations. The three models are completely integrable. The
formal linearization method is an efficient method for obtaining ex-
act multisoliton solutions of nonlinear partial differential equations.
The method can be applied to nonintegrable equations as well as
to integrable ones.

1. Introduction

Wazwaz [1] applied the Hirota’s bilinear method for obtaining mul-
tisoliton solutions of three model of shallow water waves equations in
following forms:
The first shallow water waves equation

(1.1) uxxt + 3uut + 3ux

∫ x

ut dx− ux − ut = 0.

The second shallow water waves equation

(1.2) uxxt + 3uut + 3ux

∫ x

ut dx− uxxx − 6uux − ut = 0.

The third shallow water waves equation

(1.3) uxxt + 3uut + 3ux

∫ x

ut dx− ux − uxxx − 6uux − ut = 0,
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where u = u(t, x). The aim of this paper is to find new multisoliton
solutions of three model of shallow water waves equations by using the
formal linearization method [2,3].

2. Formal linearization method

Let us consider equations of the following form

(2.1) L̂(Dt, Dx)u(t, x) = N [u],

where

(2.2) L̂(Dt, Dx) =
K∑

k=0

M∑

m=0

lkmDk
t Dm

x

is a linear differential operator with constant coefficients and

N [u] = N(u, u1, u2, . . . , up), up =
∂p1+p2u

∂tp1∂xp2
, p = (p1, p2)

is an arbitrary analytic function of u and of its derivatives up to some
finite order p. We suppose that Eq.(4) possesses the constant solution.
Without loss of generality we assume that

N [0] = 0,
∂N [0]

∂u
= 0,

∂N [0]
∂u1

= 0, . . . ,
∂N [0]
∂up

= 0.

We consider Eq.(4) in connection with the equation linearized near a
zero solution:

(2.3) L̂(Dt, Dx)w(t, x) = 0

Let L be the vector space of solutions of Eq.(6) and PN ⊂ L be the
N -dimensional subspace with the basis

wi = Wiexp(αiξi), ξi = x− sit, i = 1, .., N.

Here si and Wi are some constants.The constants αi = αi(si) are as-
sumed to satisfy the dispersion relation

L̂(−αisi, αi) = 0.

The subspacePN = {∑N
i=1 Ciwi|Ci = const} is specified by the system

of N linear ordinary differential equations
dwi

dξi
= αiwi, i = 1, .., N.

We use the following notation:

wδ
(N) = wδ1

1 wδ2
2 . . . wδN

N
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δ = (δ1, δ2, . . . , δN )

|δ| =
N∑

i=1

δi.

It is obvious that the monomials wδ
(N) are the eigenfunctions of the

operator (5):

L̂(Dt, Dx)wδ
(N) = λδw

δ
(N)

with the eigenvalues

λδ =
K∑

k=0

M∑

m=0

lkm(−
N∑

i=1

αisiδi)k(
N∑

i=1

αiδi)m.

Theorem 2.1. If λδ 6= 0 for every multiindex δ with positive integer
components δi ∈ Z+, i = 1, ..., N , satisfying the condition |δ| 6= 0, 1,
then Eq.(4) possesses solutions connected with solutions form PN by
the formal transformation

(2.4) u =
∞∑

n=1

εnφn(w1, w2, . . . , wN ),

where

(2.5) φn =
∑

|δ|=n

(An)δw
δ
(N)

are homogeneous polynomials of degree n in the variables wi .This trans-
formation is unique(for the first term φ1 ∈ PN fixed).

Remark 2.2. Here ε is the grading parameter ,finally we can put
ε = 1.
The proof of the theorem is constructive. Substituting (7) into (4),
expanding N [u] into the power series in ε ,and then collecting equal
powers of ε, we obtain the determining equations for the functions φn

and show that if λδ 6= 0,then these equations possess the solution (8)
with the coefficients (An)δ uniquely determined through the coefficients
(A1)δ by the recursion relation.Thus, the theorem gives us the method
for constructing particular solutions of Eq.(4).



384 N. Taghizadeh, M. Mirzazadeh, and A. Samiei Paghaleh

3. The first model equation for shallow water waves

In this section, we apply the formal linearization to the first shallow
water waves equation:

(3.1) uxxt + 3uut + 3ux

∫ x

ut dx− ux − ut = 0.

Using the potential

(3.2) u = vx,

Eq.(9) becomes

(3.3) vxxxt + 3vxvxt + 3vxxvt − vxx − vxt = 0.

Integrating (11) with respect to x and neglecting the constant of inte-
gration we obtain

(3.4) vxxt + 3vxvt − vx − vt = 0.

Thus, Eq.(12) can write in the form

(3.5) L̂(Dt, Dx)v(t, x) = −3vxvt,

L̂(Dt, Dx) = D2
xDt −Dx −Dt.

For simplicity we look for a solution of Eq.(13) in the form

(3.6) v(t, x) =
∞∑

n=1

εnφn(w1, w2),

where

wi = Wiexp[
√

si − 1
si

(x− sit)], i = 1, 2,

is the basis of the subspace P 2 ⊂ L(let si and Wi be some real constants).
Substituting (14) into Eq.(13) and collecting equal powers of ε we obtain
the determining equations for the functions φn as follows

L̂φ1 = 0,

(3.7) L̂φn = −3
n−1∑

k=1

DxφkDtφn−k, n ≥ 2.

These equations possess the solution φn =
∑
|δ|=n(An)δw

δ
(2), δ = (δ1, δ2),

which can be rewritten in this case in the following form

(3.8) φn =
n∑

k=0

An
kwk

1wn−k
2 (φ1 ∈ P 2),
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the coefficients An
k can be found through A1

0 and A1
1 (we can assume

that either A1
0 = A1

1 = 1 or A1
0 = 0, A1

1 = 1)by the recursion relation:
If n ≥ 2, 0 ≤ k ≤ n then

An
k =

3
λ(k,n−k)

n−1∑

l=1

n−l∑

m=0

[
√

s1 − 1
s1

(k −m) +
√

s2 − 1
s2

(l − k + m)]

[ s1

√
s1 − 1

s1
m + s2

√
s2 − 1

s2
(n− l −m)]Al

k−mAn−l
m ,

if k < 0 or k > n then An
k = 0,

λ(k,n−k) = (s1 − 1)
√

s1 − 1
s1

k(1− k2)

+ (s2 − 1)
√

s2 − 1
s2

(n− k)(1− (n− k)2)

− (s1 − 1)(s2 + 2s1)
s1

√
s2 − 1

s2
k2(n− k)

− (s2 − 1)(s1 + 2s2)
s2

√
s1 − 1

s1
k(n− k)2.

If s1 < 0, s1 > 1 and s2 < 0, s2 > 1, then λ(k,n−k) 6= 0 for every pair
(k, n− k) with k, n ∈ Z+, n ≥ 2, 0 ≤ k ≤ n.
Thus, By (10), (14) we obtain a 2-soliton solution of the first shallow
water waves equation in the form:

u(t, x) =
∞∑

n=1

n∑

k=0

(
√

s1 − 1
s1

k +
√

s2 − 1
s2

(n− k))An
kwk

1wn−k
2 .

Remark 3.1. If A1
0 = 0, then φ1 ∈ P 1 and we get form (14) the

expansion for a 1-soliton solution. For obtaining the N -soliton solution,
we must take φ1 ∈ PN .

If A1
0 = 0, then by (14) we obtain

v =
∞∑

n=1

(−1
2
)n−1(

√
s1 − 1

s1
)n−1(εw1)n

=
εw1

1 + 1
2

√
s1

s1−1εw1

=
√

s1 − 1
s1

2w

1 + w
,

(3.9)
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where w = ε
2

√
s1

s1−1w1.

In (t, x)-variables we have:

v(t, x) =
√

s1 − 1
s1

(1 + tanh[
1
2

√
s1 − 1

s1
(x− s1t)]),

where we assumed W1 = 2
ε

√
s1−1

s1
.

Therefore, By (10) we obtain exact soliton solution of the first shallow
water waves equation in the form

u(t, x) =
s− 1
2s

sech2[
1
2

√
s− 1

s
(x− st)].

4. The second model equation for shallow water waves

In this section, we apply the formal linearization to the second shallow
water waves equation:

(4.1) uxxt + 3uut + 3ux

∫ x

ut dx− uxxx − 6uux − ut = 0.

Using of (10), Eq.(18) becomes

(4.2) vxxxt + 3vxvxt + 3vxxvt − vxxxx − 6vxvxx − vxt = 0.

Integrating (19) with respect to x and neglecting the constant of inte-
gration we obtain

(4.3) vxxt + 3vxvt − vxxx − 3(vx)2 − vt = 0.

Thus, Eq.(20) can write in the form

(4.4) L̂(Dt, Dx)v(t, x) = 3(vx)2 − 3vxvt,

L̂(Dt, Dx) = D2
xDt −D3

x −Dt.

The equation linearized near a zero solution has the form L̂w = 0, and
the space of its solutions contains the subspace P 2 with the basis

wi = Wiexp[
√

si

si + 1
(x− sit)], i = 1, 2.

We look for solutions of (21) in the form (14) and obtain the determining
equation as follows:

L̂φ1 = 0,

(4.5) L̂φn = 3(
n−1∑

k=1

DxφkDxφn−k −
n−1∑

k=1

DxφkDtφn−k), n ≥ 2.
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These equations possess the solution

(4.6) φn =
n∑

k=0

An
kwk

1wn−k
2 (φ1 ∈ P 2),

the coefficients An
k can be found through A1

0 and A1
1 (we can assume

that either A1
0 = A1

1 = 1 or A1
0 = 0, A1

1 = 1) by the recursion relation:
If n ≥ 2, 0 ≤ k ≤ n then

An
k =

3
λ(k,n−k)

{
n−1∑

l=1

n−l∑

m=0

[
√

s1

s1 + 1
(k −m) +

√
s2

s2 + 1
(l − k + m)]

[
√

s1

s1 + 1
m +

√
s2

s2 + 1
(n− l −m)]Al

k−mAn−l
m

+
n−1∑

l=1

n−l∑

m=0

[
√

s1

s1 + 1
(k −m) +

√
s2

s2 + 1
(l − k + m)]

[ s1

√
s1

s1 + 1
m + s2

√
s2

s2 + 1
(n− l −m)]Al

k−mAn−l
m },

if k < 0 or k > n then An
k = 0,

λ(k,n−k) = s1

√
s1

s1 + 1
k(1− k2)

+ s2

√
s2

s2 + 1
(n− k)(1− (n− k)2)

− 2s2
1 + s1s2 + 3s1

s1 + 1

√
s2

s2 + 1
k2(n− k)

− 2s2
2 + s1s2 + 3s2

s2 + 1

√
s1

s1 + 1
k(n− k)2.

If s1 < −1, s1 > 0 and s2 < −1, s2 > 0, then λ(k,n−k) 6= 0 for every pair
(k, n− k) with k, n ∈ Z+, n ≥ 2, 0 ≤ k ≤ n.
Thus, we obtain a 2-soliton solution of the second shallow water waves
equation in the form:

u(t, x) =
∞∑

n=1

n∑

k=0

(
√

s1

s1 + 1
k +

√
s2

s2 + 1
(n− k))An

kwk
1wn−k

2 .
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If A1
0 = 0, then by (14) we obtain

v =
∞∑

n=1

(−1
2
)n−1(

√
s1 + 1

s1
)n−1(εw1)n =

εw1

1 + 1
2

√
s1+1

s1
εw1

=
√

s1

s1 + 1
2w

1 + w
,

(4.7)

where w = ε
2

√
s1+1

s1
w1.

In (t, x)-variables we have:

v(t, x) =
√

s1

s1 + 1
(1 + tanh[

1
2

√
s1

s1 + 1
(x− s1t)]),

where we assumed W1 = 2
ε

√
s1

s1+1 .

Therefore, By (10) we obtain exact soliton solution of the second shallow
water waves equation in the form

u(t, x) =
s

2(s + 1)
sech2[

1
2

√
s

s + 1
(x− st)].

5. The third model equation for shallow water waves

We finally apply the formal linearization to the third shallow water
waves equation:

(5.1) uxxt + 3uut + 3ux

∫ x

ut dx− ux − uxxx − 6uux − ut = 0,

Using of (10), Eq.(25) becomes

(5.2) vxxxt + 3vxvxt + 3vxxvt − vxx − vxxxx − 6vxvxx − vxt = 0.

Integrating (26) with respect to x and neglecting the constant of inte-
gration we obtain

(5.3) vxxt + 3vxvt − vx − vxxx − 3(vx)2 − vt = 0.

Thus, Eq.(27) can write in the form

(5.4) L̂(Dt, Dx)v(t, x) = 3(vx)2 − 3vxvt,

L̂(Dt, Dx) = D2
xDt −Dx −D3

x −Dt.

In this case, the subspace P 2 is generated by the functions

wi = Wiexp[
√

si − 1
si + 1

(x− sit)], i = 1, 2.
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Our procedure gives

(5.5) v(t, x) =
∞∑

n=1

εn
n∑

k=0

An
kwk

1wn−k
2 ,

An
k =

3
λ(k,n−k)

{
n−1∑

l=1

n−l∑

m=0

[
√

s1 − 1
s1 + 1

(k −m) +
√

s2 − 1
s2 + 1

(l − k + m)]

[
√

s1 − 1
s1 + 1

m +
√

s2 − 1
s2 + 1

(n− l −m)]Al
k−mAn−l

m

+
n−1∑

l=1

n−l∑

m=0

[
√

s1 − 1
s1 + 1

(k −m) +
√

s2 − 1
s2 + 1

(l − k + m)]

[ s1

√
s1 − 1
s1 + 1

m + s2

√
s2 − 1
s2 + 1

(n− l −m)]Al
k−mAn−l

m },

n ≥ 2, 0 ≤ k ≤ n; if k < 0 or k > n then An
k = 0;

λ(k,n−k) = (s1 − 1)
√

s1 − 1
s1 + 1

k(1− k2)

+ (s2 − 1)
√

s2 − 1
s2 + 1

(n− k)(1− (n− k)2)

− (s1 − 1)(2s1 + s2 + 3)
s1 + 1

√
s2 − 1
s2 + 1

k2(n− k)

− (s2 − 1)(s1 + 2s2 + 3)
s2 + 1

√
s1 − 1
s1 + 1

k(n− k)2.

Here either A1
0 = A1

1 = 1 or A1
0 = 0, A1

1 = 1. If s1 < −1, s1 > 1
and s2 < −1, s2 > 1, then λ(k,n−k) 6= 0 for every pair (k, n − k) with
k, n ∈ Z+, n ≥ 2, 0 ≤ k ≤ n.
Thus, we obtain a 2-soliton solution of the third shallow water waves
equation in the form:

u(t, x) =
∞∑

n=1

n∑

k=0

(
√

s1 − 1
s1 + 1

k +
√

s2 − 1
s2 + 1

(n− k))An
kwk

1wn−k
2 .

If A1
0 = 0, then by (29) we obtain
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v =
∞∑

n=1

(−1
2
)n−1(

√
s1 + 1
s1 − 1

)n−1(εw1)n =
εw1

1 + 1
2

√
s1+1
s1−1εw1

=
√

s1 − 1
s1 + 1

2w

1 + w
,

(5.6)

where w = ε
2

√
s1+1
s1−1w1.

In (t, x)-variables we have:

v(t, x) =
√

s1 − 1
s1 + 1

(1 + tanh[
1
2

√
s1 − 1
s1 + 1

(x− s1t)]),

where we assumed W1 = 2
ε

√
s1−1
s1+1 .

Therefore, By (10) we obtain exact soliton solution of the third shallow
water waves equation in the form

u(t, x) =
s− 1

2(s + 1)
sech2[

1
2

√
s− 1
s + 1

(x− st)].
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